

Welcome to CRUDLFA+’s documentation!

CRUDLFA+ stands for Create Read Update Delete List Form Autocomplete and more.

This plugin for Django makes a rich user interface from Django models.

Contents:

	Install CRUDLFA+ module
	Installing from PyPi

	With development packages

	Installing from GitHub

	Installing from source

	CRUDLFA+ Tutorial
	About document

	About module

	Enable in your project

	Define a Router

	URLs

	Changing home page

	Route class

	URLPatterns autogeneration mechanisms: Router
	Menus

	Settings
	Project

	Views

	Factory DRY patterns

	crudlfap_auth: crudlfap module for django.contrib.auth
	Auth Views

Indices and tables

	Index

	Module Index

	Search Page

Install CRUDLFA+ module

This section concerns
This package can be installed from PyPi by running:

Installing from PyPi

If you are just getting started with CRUDLFA+, it is recommended that you
start by installing the latest version from the Python Package Index (PyPi [https://pypi.python.org/pypi]).
To install CRUDLFA+ from PyPi using pip run the following command in your terminal.

pip install crudlfap

If you are not in a virtualenv [https://virtualenv.pypa.io/], the above will fail if not executed as root,
in this case use install --user:

pip install --user crudlfap

With development packages

If you intend to run the crudlfap dev command, then you should have the
development dependencies by adding [dev]:

pip install (--user) crudlfap[dev]

Then, you should see the example project running on port 8000 with command:

crudlfap dev

Installing from GitHub

You can install the latest current trunk of crudlfap directly from GitHub using pip [https://pip.pypa.io/en/stable/installing/].

pip install --user -e git+git://github.com/yourlabs/crudlfap.git@master#egg=crudlfap[dev]

Warning

[dev], --user, @master are all optionnal above.

Installing from source

	Download a copy of the code from GitHub. You may need to install git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git].

git clone https://github.com/yourlabs/crudlfap.git

	Install the code you have just downloaded using pip, assuming your current
working directory has not changed since the previous command it could be:

pip install -e ./crudlfap[dev]

Move on to the CRUDLFA+ Tutorial.

CRUDLFA+ Tutorial

About document

This document attempts to teach the patterns you can use, and at the same time
go through every feature. The document strives to teach CRUDLFA+ as efficiently
as possible. If it becomes too long, we will see how we refactor the document,
until then, it serves as main documentation. Please contribute any modification
you feel this document needs to fit its purpose.

About module

CRUDLFA+ strives to provide a modern UI for Django generic views out of the
box, but all defaults should also be overiddable as conveniently as possible.
It turns out that Django performs extremely well already, and pushing Django’s
philosophy such as DRY as far as possible works very well for me.

Enable in your project

We’re going to setup TEMPLATES and INSTALLED_APPS before we begin.

Note

We will review the minimal settings in this tutorial, but you can
consult the default settings available for your crudlfap version in
the settings module.

TEMPLATES

CRUDLFA+ uses Jinja2 templates with a quite extended configuration. Options to
enable them are using any of these in your settings:

	easiest: crudlfap.settings.TEMPLATES

	intermediate: crudlfap.settings.CRUDLFAP_TEMPLATE_BACKEND

	custom: crudlfap.settings.DEFAULT_TEMPLATE_BACKEND

INSTALLED_APPS

CRUDLFA+ leverages apps from the Django ecosystem.
Use crudlfap.settings.CRUDLFAP_TEMPLATE_BACKEND. To help make this a
pleasant experience, CRUDLFAP+ splits the INSTALLED_APPS setting into multiple
settings you can import and mix together:

	everything: crudlfap.settings.INSTALLED_APPS,

	crudlfap only: crudlfap.settings.CRUDLFAP_APPS,

	django apps: crudlfap.settings.DJANGO_APPS,

Define a Router

Register a CRUD with default views using Router.register()

Just add a crudlfap.py file in one of your installed apps, and the
DefaultConfig will autodiscover them, this example
shows how to enable the default CRUD for a custom model:

from crudlfap import shortcuts as crudlfap

from .models import Artist

crudlfap.Router(
 Artist,
 fields='__all__',
).register()

In this case, the Router will get the views
it should serve from the CRUDLFAP_VIEWS
setting.

Custom view parameters with View.clone()

If you want to specify views in the router:

.. literalinclude:: ../src/crudlfap_example/song/crudlfap.py

Using the clone() classmethod will
define a subclass on the fly with the given attributes.

URLs

The easiest configuration is to generate patterns from the default registry:

from crudlfap import shortcuts as crudlfap

urlpatterns = [
 crudlfap.site.urlpattern
]

Or, to sit in /admin:

crudlfap.site.urlpath = 'admin'

urlpatterns = [
 crudlfap.site.urlpattern,
 # your patterns ..
]

Changing home page

CRUDLFA+ so far relies on Jinja2 and provides a configuration
where it finds templates in app_dir/jinja2.

As such, a way to override the home page template is to create a directory
“jinja2” in one of your apps - personnaly i add the project itself to
INSTALLED_APPS, sorry if you have hard feelings about it but i love to do
that, have a place to put project-specific stuff in general - and in the
jinja2 directory create a crudlfap/home.html file.

You will also probably want to override crudlfap/base.html. But where it
gets more interresting is when you replace the home view with your own.
Example, still in urls.py:

from crudlfap import shortcuts as crudlfap
from .views import Dashboard # your view

crudlfap.site.title = 'Your Title' # used by base.html
crudlfap.site.urlpath = 'admin' # example url prefix
crudlfap.site.views['home'] = views.Dashboard

urlpatterns = [
 crudlfap.site.get_urlpattern(),
]

So, there’d be other ways to acheive this but that’s how i like to
do it.

Route class

CRUDLFA+ introduces an MVC-ish pattern, as the Router class is meant to sit
between a Model class and its set of View. Your views will have to inherit from
Route to work in Router.views. This structural decision made for you by
CRUDLFA+ was not exactly designed: it’s an open source rewrite of a module that
was ordered in a proprietary project.

	
class crudlfap.route.Route

	The mixin for Views that will make it compatible with Router.

	
authenticate

	False by default, it makes the default has_perm() implementation
require Django permission.

	
urlargs

	Args that should be passed to reverse() along with Route.urlfullname.

	
url

	Absolute url to the view, relying on Route.urlfullname and
Route.urlargs.

You will be able to check if a user has access to a view with a given
object for example as such:

crudlfap.site[YourModel]['detail'].clone(
 request=request,
 object=obj,
).has_perm()

If you want to open a View to all, set authenticate=False, examples:

class YourDetailView(DetailView):
 authenticate = False

class YourRouter(Router):
 views = [
 YourDetailView,
 ListView.clone(authenticate=False), # example with clone
]

Without authenticate=False, the default has_perm() implementation requires the
request user to have the permission corresponding to the
permission_fullcode attribute.

To create the permission with permission_fullcode, you can browse in your
CRUDLFA+ site and navigate to URL list view, for each URL you have link in
the menu called “authorized” that lets you select which groups have this
permission: it will auto-create the permission in the database if
necessary.

	
dispatch(request, *args, **kwargs)

	This will run has_perm prior to super().dispatch().

	
get_permission_codename()

	Return the codename attribute for the view Permission.

	
get_permission_fullcode()

	Return a string with the app name, permission_shortcode and model name.

	
get_permission_shortcode()

	Return the middle part for the view permission.

Returns the urlname by default.

	
get_url()

	Return the URL for this view given its current state.
Given that the reverse() method is a class method, this should
allow things like:

url = YourView(object=your_object).url

	
get_urlargs()

	Return args for reversing this view url from self.
See self.reverse() for detail.

	
has_perm()

	Checks for user permission.

	
classmethod reverse(*args, **kwargs)

	Reverse a url to this view with the given args.

	
class crudlfap.route.RouteMetaclass

	Base autocalculations for views.

	
app_name

	The view’s app name.

	
model

	The view’s model if any.

	
urlpath

	The path for the url path definition.

	
label

	The view label, serves as key in a Router.views.

	
urlpattern

	The Django URL path() instance, for inclusion in url lists.

	
urlfullname

	The full name to reverse the URL, with namespaces if any.

	
urlfield

	The default model field that will be use to match in the URL. It can be
pk, or name, slug …

	
get_app_name()

	Return the model’s app_name or None.

	
get_label()

	Return a readable label for this view.

Strips View and Route from class name, also removes the model class
name if it finds it: for YourModelUpdateView this returns update.

	
get_model()

	Return the router’s model or None.

	
get_urlfield()

	Return the router urlfield if any, else guess_urlfield()

	
get_urlfullname()

	Return the url name eventually with router and site namespaces.

	
get_urlname()

	Return a string that can be used as url name.

	
get_urlpath()

	Return the urlname.

	
get_urlpattern()

	Return the Django URL object to include in a urlpatterns.

URLPatterns autogeneration mechanisms: Router

One of the key architectural concepts of CRUDLFA+ is the ability to tie a group
of view with a model class to autogenerate urlpatterns. This chapter reviews
the different mechanisms in place and how they are overridable.

Source is located in the Router, which
we’ll describe here.

The CRUDLFA+ Router is able to generate menus checking perms, generate urls …

Note

Note that you can also use non-database backed models, by inheriting
from models.Model and setting their Meta.managed attribute to False.
Then, you can use CRUDLFA+ views and routers.

Menus

A menu is referenced by a short name, and CRUDLFA+ generic views already define
a bunch of them, but you can add your own too:

	object: means the view is for a model instance,

	object_detail: means the view should only be visible from detail view,

	model: means the view applies to a model class, such as list view,

	main: means the view should be in the main menu.

To get the views of a router, for a menu, kwargs such as the object, and with
permissions on request.user use Router.get_menu(). In Jinja2
templates you can call them with:

{% set views=view.router.get_menu(
 'object',
 view.request,
 object=view.object
) %}

Now that Django can generate a menu after serious the refactoring that brought
us to discover this pattern with Etienne Vidal @ DevNix, we rely on Jinja2 to
refactor the HTML to render those menus.

The menu macro takes a list of views as argument, and also a
unique HTML id it can use to generate the dropdown.

{% import 'crudlfap.html' as crudlfap %}
{{ crudlfap.dropdown(views, 'row-actions-' + str(object.pk)) }}
{# also works, different style: #}
{{ crudlfap.dropdownbutton(views, 'row-actions-' + str(object.pk)) }}

The above code will generate a Material design dropdown menu with an icon and
the other one as a button with all nice icons, titles, permissions checked, and
so on. This is used everywhere you see a part of the page that can spawn to a
dropdown. If there is only one matching view, it will display only the button.

	
class crudlfap.router.Router(model=None, registry=None, views=None, **attributes)

	Base router for CRUDLFA+ Route.

	
model

	Optional model class for this Router and all its views.

	
views

	ViewsDescriptor using
CRUDLFAP_VIEWS by default,
otherwise your list of views.

Note

The final views list is generated by the
generate_views() method.

	
generate_views(*views)

	Generate views for this router, core of the automation in CRUDLFA+.

This method considers each view in given args or self.views and returns
a list of usable views.

Each arg may be a view class or a dict of attributes with a _cls key
for the actual view class.

It will copy the view class and bind the router on it in the list this
returns.

For example, this would cause two view classes to be returned, if
self.model is Artist, then CreateView will be used as parent to
create ArtistCreateView and DetailView will be used to create
ArtistDetailView, also setting the attribute
extra_stuff='bar':

Router(Artist).generate_views([
 CreateView,
 dict(_cls=DetailView, extra_stuff='bar'),
 ListView.factory(paginate_by=12),
])

	
get_app_name()

	Generate app name for this Router views.

	
get_fields(view)

	Return the list of fields for a user.

	
get_menu(name, request, **kwargs)

	Return allowed view objects which have name in their menus.

For each view class in self.views which have name in their
menus attribute, instanciate the view class with request and
kwargs, call has_perm() on it.

Return the list of view instances for which has_perm() has passed.

	
get_namespace()

	Generate namespace for this Router views.

	
get_queryset(view)

	Return the queryset for a view, returns all by default.

	
get_urlfield()

	Return Field name of model for reversing url.

This will return model ` slug ` field if available or ` pk ` field.

See guess_urlfield() for detail.

	
get_urlpath()

	Return Model name for urlpath.

	
get_urlpatterns()

	Generate URL patterns for this Router views.

	
has_perm(view)

	View’s request.user has_perm call with the view’s permission_fullcode.

	
register()

	Register to self.registry.

Also, adds the get_absolute_url() method to the model class if it has
None, to return the reversed url for this instance to the view of this
Router with the detail slug.

Set get_absolute_url in your model class to disable this feature. Until
then, you got it for free.

Also, register this router as default router for its model class in the
RouterRegistry.

	
class crudlfap.router.Views

	

Settings

Project

A settings file to import boilerplate from.

	
crudlfap.settings.AUTHENTICATION_BACKENDS

	Contains the default django.contrib.auth.backends.ModelBackend and
also crudlfap_auth.backends.ViewBackend which will introspect the
view’s authenticate and allowed_groups variables.

	
crudlfap.settings.CRUDLFAP_VIEWS

	List of default views to provide to Routers that were not spawned with any
view.

	
crudlfap.settings.INSTALLED_APPS

	That list contains both CRUDLFAP_APPS and DJANGO_APPS
and you can use them as such on a new project:

from crudlfap.settings import INSTALLED_APPS

INSTALLED_APPS = ['yourapp'] + INSTALLED_APPS

	
crudlfap.settings.CRUDLFAP_APPS

	List of apps CRUDLFA+ depends on, you can use it as such:

from crudlfap.settings import CRUDLFAP_APPS

INSTALLED_APPS = [
 'yourapp',
 'django.contrib.staticfiles',
 # etc
] + CRUDLFAP_APPS

	
crudlfap.settings.DJANGO_APPS

	This list contains all contrib apps from the Django project that CRUDLFA+
should depend on. You can use it as such:

from crudlfap.settings import CRUDLFAP_APPS, DJANGO_APPS

INSTALLED_APPS = ['yourapp'] + CRUDLFAP_APPS + DJANGO_APPS

	
crudlfap.settings.TEMPLATES

	This list contains both DEFAULT_TEMPLATE_BACKEND and
CRUDLFAP_TEMPLATE_BACKEND and works out of the box on an empty
project. You can add it to your settings file by just importing it:

from crudlfap.settings import TEMPLATES

	
crudlfap.settings.CRUDLFAP_TEMPLATE_BACKEND

	Configuration for Jinja2 and environment expected by
CRUDLFA+ default templates. Add it to your own TEMPLATES setting using
import:

from crudlfap.settings import CRUDLFAP_TEMPLATE_BACKEND

TEMPLATES = [
 # YOUR_BACKEND
 CRUDLFAP_TEMPLATE_BACKEND,
]

	
crudlfap.settings.DEFAULT_TEMPLATE_BACKEND

	Configuration for Django template backend with all builtin context
processors. You can use it to define only your third backend as such:

from crudlfap.settings import (
 CRUDLFAP_TEMPLATE_BACKEND,
 DEFAULT_TEMPLATE_BACKEND,
)

TEMPLATES = [
 # YOUR_BACKEND
 CRUDLFAP_TEMPLATE_BACKEND,
 DEFAULT_TEMPLATE_BACKEND,
]

	
crudlfap.settings.DEBUG

	Evaluate DEBUG env var as boolean, False by default.

	
crudlfap.settings.SECRET_KEY

	Get SECRET_KEY env var, or be 'notsecret' by default.

Danger

Raises an Exception if it finds both SECRET_KEY=notsecret and
DEBUG=False.

	
crudlfap.settings.ALLOWED_HOSTS

	Split ALLOWED_HOSTS env var with commas, or be ['*'] by default.

Danger

Raises an Exception if it finds both ALLOWED_HOSTS to be
'*' and DEBUG=False.

	
crudlfap.settings.MIDDLEWARE

	A default MIDDLEWARE configuration you can import.

	
crudlfap.settings.OPTIONAL_APPS

	from crudlfap.settings import *
[…] your settings
install_optional(OPTIONAL_APPS, INSTALLED_APPS)
install_optional(OPTIONAL_MIDDLEWARE, MIDDLEWARE)

Views

Source is located in the generic, which
we’ll describe here.

Crudlfa+ generic views and mixins.

Crudlfa+ takes views further than Django and are expected to:

	generate their URL definitions and reversions,

	check if a user has permission for an object,

	declare the names of the navigation menus they belong to.

	
class crudlfap.views.generic.CreateView(**kwargs)

	View to create a model object.

	
class crudlfap.views.generic.DeleteObjectsView(**kwargs)

	Delete selected objects.

	
class crudlfap.views.generic.DeleteView(**kwargs)

	View to delete an object.

	
class crudlfap.views.generic.DetailView(**kwargs)

	Templated model object detail view which takes a field option.

	
class crudlfap.views.generic.FormView(**kwargs)

	Base FormView class.

	
class crudlfap.views.generic.HistoryView(**kwargs)

	

	
class crudlfap.views.generic.ListView(**kwargs)

	

	
class crudlfap.views.generic.ModelFormView(**kwargs)

	

	
class crudlfap.views.generic.ModelView(**kwargs)

	

	
class crudlfap.views.generic.ObjectFormView(**kwargs)

	Custom form view on an object.

	
class crudlfap.views.generic.ObjectView(**kwargs)

	

	
class crudlfap.views.generic.ObjectsFormView(**kwargs)

	

	
class crudlfap.views.generic.ObjectsView(**kwargs)

	

	
class crudlfap.views.generic.TemplateView(**kwargs)

	TemplateView for CRUDLFA+.

	
class crudlfap.views.generic.UpdateView(**kwargs)

	Model update view.

	
class crudlfap.views.generic.View(**kwargs)

	Base view for CRUDLFA+.

Factory DRY patterns

CRIMINALLY INVASIVE HACKS in Factory.

	
class crudlfap.factory.Factory

	Adds clumsy but automatic getter resolving.

The __getattr__ override makes this class try to call a get_*() method
for variables that are not in self.__dict__.

For example, when self.foo is evaluated and ‘foo’ not in self.__dict__
then it will call the self.get_foo()

If self.get_foo() returns None, it will try to get the result again from
self.__dict__. Which means that we are going to witness this horrroorr:

class YourEvil(Factory):
 def get_foo(self):
 self.calls += 1
 self.foo = 13

assert YourEvil.foo == 13 # crime scene 1
assert YourEvil.foo == 13 # crime scene 2
assert YourEvil.calls == 1 # crime scene 3

For the moment it is pretty clumsy because i tried to contain the
criminality rate as low as possible meanwhile i like the work it does for
me !

	
classmethod clone(*mixins, **attributes)

	Return a subclass with the given attributes.

If a model is found, it will prefix the class name with the model.

	
class crudlfap.factory.FactoryMetaclass

	__getattr__ that ensures a first argument to getters.

Makes the getter work both from class and instance

Thanks to this, your get_*() methods will /maybe/ work in both
cases:

YourClass.foo # calls get_foo(YourClass)
YourClass().foo # calls get_foo(self)

Don’t code drunk.

	
get_cls()

	Return the cls.

did it go to far at this point ?

crudlfap_auth: crudlfap module for django.contrib.auth

Contents:

	Auth Views

Auth Views

Source is located in the views, which
we’ll describe here.

Crudlfa+ PasswordView, Become and BecomeUser views.

Crudlfa+ takes views further than Django and are expected to:

	generate their URL definitions and reversions,

	check if a user has permission for an object,

	declare the names of the navigation menus they belong to.

	
class crudlfap_auth.views.Become(**kwargs)

	
	
has_perm()

	Checks for user permission.

	
class crudlfap_auth.views.BecomeUser(**kwargs)

	
	
get_object(queryset=None)

	Return the object the view is displaying.

Require self.queryset and a pk or slug argument in the URLconf.
Subclasses can override this to return any object.

	
get_title_menu()

	Return title for menu links to this view.

	
class crudlfap_auth.views.PasswordView(**kwargs)

	
	
get_form_kwargs()

	Return the keyword arguments for instantiating the form.

	
get_title_submit()

	Title of the submit button.

Defaults to title_menu

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 crudlfap	

 	
 	
 crudlfap.factory	

 	
 	
 crudlfap.route	

 	
 	
 crudlfap.router	

 	
 	
 crudlfap.settings	

 	
 	
 crudlfap.views.generic	

 	[image: -]
 	
 crudlfap_auth	

 	
 	
 crudlfap_auth.views	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	ALLOWED_HOSTS (in module crudlfap.settings)

 	
 	AUTHENTICATION_BACKENDS (in module crudlfap.settings)

B

 	
 	Become (class in crudlfap_auth.views)

 	
 	BecomeUser (class in crudlfap_auth.views)

C

 	
 	clone() (crudlfap.factory.Factory class method)

 	CreateView (class in crudlfap.views.generic)

 	crudlfap.factory (module)

 	crudlfap.route (module)

 	crudlfap.router (module)

 	
 	crudlfap.settings (module)

 	crudlfap.views.generic (module)

 	CRUDLFAP_APPS (in module crudlfap.settings)

 	crudlfap_auth.views (module)

 	CRUDLFAP_TEMPLATE_BACKEND (in module crudlfap.settings)

 	CRUDLFAP_VIEWS (in module crudlfap.settings)

D

 	
 	DEBUG (in module crudlfap.settings)

 	DEFAULT_TEMPLATE_BACKEND (in module crudlfap.settings)

 	DeleteObjectsView (class in crudlfap.views.generic)

 	
 	DeleteView (class in crudlfap.views.generic)

 	DetailView (class in crudlfap.views.generic)

 	dispatch() (crudlfap.route.Route method)

 	DJANGO_APPS (in module crudlfap.settings)

F

 	
 	Factory (class in crudlfap.factory)

 	
 	FactoryMetaclass (class in crudlfap.factory)

 	FormView (class in crudlfap.views.generic)

G

 	
 	generate_views() (crudlfap.router.Router method)

 	get_app_name() (crudlfap.route.RouteMetaclass method)

 	(crudlfap.router.Router method)

 	get_cls() (crudlfap.factory.FactoryMetaclass method)

 	get_fields() (crudlfap.router.Router method)

 	get_form_kwargs() (crudlfap_auth.views.PasswordView method)

 	get_label() (crudlfap.route.RouteMetaclass method)

 	get_menu() (crudlfap.router.Router method)

 	get_model() (crudlfap.route.RouteMetaclass method)

 	get_namespace() (crudlfap.router.Router method)

 	get_object() (crudlfap_auth.views.BecomeUser method)

 	get_permission_codename() (crudlfap.route.Route method)

 	get_permission_fullcode() (crudlfap.route.Route method)

 	
 	get_permission_shortcode() (crudlfap.route.Route method)

 	get_queryset() (crudlfap.router.Router method)

 	get_title_menu() (crudlfap_auth.views.BecomeUser method)

 	get_title_submit() (crudlfap_auth.views.PasswordView method)

 	get_url() (crudlfap.route.Route method)

 	get_urlargs() (crudlfap.route.Route method)

 	get_urlfield() (crudlfap.route.RouteMetaclass method)

 	(crudlfap.router.Router method)

 	get_urlfullname() (crudlfap.route.RouteMetaclass method)

 	get_urlname() (crudlfap.route.RouteMetaclass method)

 	get_urlpath() (crudlfap.route.RouteMetaclass method)

 	(crudlfap.router.Router method)

 	get_urlpattern() (crudlfap.route.RouteMetaclass method)

 	get_urlpatterns() (crudlfap.router.Router method)

H

 	
 	has_perm() (crudlfap.route.Route method)

 	(crudlfap.router.Router method)

 	(crudlfap_auth.views.Become method)

 	
 	HistoryView (class in crudlfap.views.generic)

I

 	
 	INSTALLED_APPS (in module crudlfap.settings)

L

 	
 	ListView (class in crudlfap.views.generic)

M

 	
 	MIDDLEWARE (in module crudlfap.settings)

 	model (crudlfap.router.Router attribute)

 	
 	ModelFormView (class in crudlfap.views.generic)

 	ModelView (class in crudlfap.views.generic)

O

 	
 	ObjectFormView (class in crudlfap.views.generic)

 	ObjectsFormView (class in crudlfap.views.generic)

 	
 	ObjectsView (class in crudlfap.views.generic)

 	ObjectView (class in crudlfap.views.generic)

 	OPTIONAL_APPS (in module crudlfap.settings)

P

 	
 	PasswordView (class in crudlfap_auth.views)

R

 	
 	register() (crudlfap.router.Router method)

 	reverse() (crudlfap.route.Route class method)

 	Route (class in crudlfap.route)

 	Route.authenticate (in module crudlfap.route)

 	Route.url (in module crudlfap.route)

 	Route.urlargs (in module crudlfap.route)

 	RouteMetaclass (class in crudlfap.route)

 	
 	RouteMetaclass.app_name (in module crudlfap.route)

 	RouteMetaclass.label (in module crudlfap.route)

 	RouteMetaclass.model (in module crudlfap.route)

 	RouteMetaclass.urlfield (in module crudlfap.route)

 	RouteMetaclass.urlfullname (in module crudlfap.route)

 	RouteMetaclass.urlpath (in module crudlfap.route)

 	RouteMetaclass.urlpattern (in module crudlfap.route)

 	Router (class in crudlfap.router)

S

 	
 	SECRET_KEY (in module crudlfap.settings)

T

 	
 	TEMPLATES (in module crudlfap.settings)

 	
 	TemplateView (class in crudlfap.views.generic)

U

 	
 	UpdateView (class in crudlfap.views.generic)

V

 	
 	View (class in crudlfap.views.generic)

 	
 	Views (class in crudlfap.router)

 	views (crudlfap.router.Router attribute)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to CRUDLFA+’s documentation!

 		
 Install CRUDLFA+ module

 		
 Installing from PyPi

 		
 With development packages

 		
 Installing from GitHub

 		
 Installing from source

 		
 CRUDLFA+ Tutorial

 		
 About document

 		
 About module

 		
 Enable in your project

 		
 TEMPLATES

 		
 INSTALLED_APPS

 		
 Define a Router

 		
 Register a CRUD with default views using Router.register()

 		
 Custom view parameters with View.clone()

 		
 URLs

 		
 Changing home page

 		
 Route class

 		
 URLPatterns autogeneration mechanisms: Router

 		
 Menus

 		
 Settings

 		
 Project

 		
 Views

 		
 Factory DRY patterns

 		
 crudlfap_auth: crudlfap module for django.contrib.auth

 		
 Auth Views

_static/up.png

_static/up-pressed.png

